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MECHANISM OF REDISTRIBUTION OF AN ALKALI ADDITION IN THE CHANNEL 

OF AN MHD GENERATOR 

D. I. Lamden and M. B. Reznikov UDC 538.4 

It is of great interest to study diffusion and mass-transfer processes that take place 
in an easily-ionized alkali addition (usually potassium) introduced into the channel of an 
MHD generator to increase the conductivity of the plasma, since these processes to a large 
extent determine the operating characteristics of the generator. Flow in the channel is ap- 
preciably nonisothermal in character, which leads to variability of the composition of the 
addition over the cross section. At temperatures of about 3000~ typical of the flow core, 
the addition is mainly in the form of potassium ions, and the quantity of KOH molecules and 
potassium ions is one order of magnitude lower. With approach toward the relatively cold 
walls (T ~ I000-2000~ the concentration of atomic and ionized potassium begins to de- 
crease due to an increase in the concentration of KOH molecules. Thus, at temperatures of 
about 2000-1500~ the addition is mainly in the form of KOH. Finally, a decrease in tem- 
perature to below 1500~ is accompanied by the beginning of the reaction of KOH with the 
dioxide in the combustion products to form the carbonate K2CO3. The diffusion countercur- 
rents which develop here lead to a nonuniform distribution of potassium as an element across 
the channel due to a difference in the diffusion coefficients of the components. The addi- 
tion is also redistributed as a result of thermal diffusion and absorption of the addition 
on the walls. It was shown in [1, 2] that the drift of potassium ions in an electrical and 
magnetic field may lead to significant redistribution of the addition over the cross section 
of an MHD channel and, in particular, to an increase in its concentration near the cathode 
and a decrease in same as the anode. The goal of the present work is to obtain general equa- 
tions describing the redistribution of an addition under the influence of the group of mech- 
anisms discussed above and to analyze the contribution of each mechanism. 

I. Flow in an MHD channel is turbulent both as a result of the natural turbulence of 
the combustion products and due to the development of turbulent boundary layers at the walls. 
Since all of the effects described below are important in these boundary layers, we can ex- 
amine just the transverse diffusion flow of the addition as an element, which is equal to 
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] = - -  N D  ~.~ - -  c N F  + ]i, (1.1)  

where 

c = 7f~ chgh, D .= ~ ,  Df,gq:~h, . ~ = c f fc ,  
h 

m , lnT/@).  F = ~ Dk&, (0~,,/@) + ~ Dn a,, ~hg,, (0 

H e r e ,  j and e a r e  t h e  f l o w  and t h e  r e l a t i v e  c o n c e n t r a t i o n  of  t h e  a d d i t i o n  as  an e l e m e n t  ( p o -  
t a s s i u m ,  f o r  t h e  s a k e  of  d e f i n i t e n e s s ) ;  N i s  t h e  c o n c e n t r a t i o n  of  m o l e c u l e s  of  t h e  b u f f e r  gas  
o f  c o m b u s t i o n  p r o d u c t s ;  c k and gk a r e  t h e  r e l a t i v e  c o n c e n t r a t i o n s  of  t h e  n e u t r a l  componen t s  
o f  t he  a d d i t i o n  and t h e  q u a n t i t y  of  p o t a s s i u m  a toms in  t h e i r  m o l e c u l e s ;  D k = D~ + D t i s  t h e  
t o t a l  d i f f u s i o n  c o e f f i c i e n t  ( b o t h  m o l e c u l a r  and t u r b u l e n t ) ;  a~ i s  t h e  t h e r m a l  d i f f u s i o n  c o n -  
stant; T is temperature; Ji is the diffusion current of ions. The latter should be sought 
from the solution of the system 

Oc i 
]~ = - -  N D i ~ -  + ~liNei ( E  + v x B ) ,  

0% 
]e = - -  N D e  ~'u - -  t'teNce ( E  + VxB),. ( 1 . 2 )  

Y = e ( k  - -  j~), o~ ~ N (c~ - -  e~), 
0[t e o 

where  Je  i s  t h e  f l o w  of  e l e c t r o n s ;  J i s  t h e  c u r r e n t  d e n s i t y ;  D i ,  D e and ~ i ,  ~e a r e  t h e  c o e f -  
f i c i e n t s  of  d i f f u s i o n  and m o b i l i t y  of  t h e  i o n s  and e l e c t r o n s ;  E and B a r e  t h e  e l e c t r i c a l  and 
m a g n e t i c  f i e l d s ;  v x i s  t h e  l o n g i t u d i n a l  component  o f  t h e  f l o w  v e l o c i t y ;  so i s  t h e  d i e l e c t r i c  
c o n s t a n t .  T r a n s f o r m i n g  ( 1 . 2 ) ,  we d i v i d e  t h e  f i r s t  two t e r m s  of  t h e  e q u a t i o n  by ~ i  and ~e ,  
r e s p e c t i v e l y ,  add them, and i n s e r t  Je  a n d  (c i - - C e )  f rom t h e  l a s t  two e q u a t i o n s  i n t o  t h e  r e -  
s u l t i n g  expression. As a result, ignoring the small quantity ~i/~e relative to unity, we 
have 

e o 1) e O r e 
T ~-~ ~ j  H ~ - -  N D i ~ - -  N -= ~q -~l " ( t  .3 )  

e , ~1 e 

H e r e ,  t h e  f i r s t  t e r m  on t h e  r i g h t  s i d e  c o r r e s p o n d s  t o  t h e  i on  c u r r e n t  d e n s i t y  in  a q u a s i -  
n e u t r a l  p l a s m a ,  w h i l e  t h e  s econd  d e s c r i b e s  t h e  d e v i a t i o n  of  t he  i on  c u r r e n t  f rom t h e  q u a s i -  
n e u t r a l  v a l u e  due to  t h e  a c t i o n  of  s t r o n g  e l e c t r i c a l  f i e l d s  in  t h e  e l e c t r o d e  r e g i o n s  o f  t h e  
s p a c e  c h a r g e  ( i . e . ,  i n  t h o s e  r e g i o n s  where  q u a s i n e u t r a l i t y  i s  d i s t u r b e d ) .  As was shown i n  
[ 2 ] ,  t h e  l a s t  two t e r m s  i n  ( 1 . 3 ) ,  c o n n e c t e d  w i t h  c o n c e n t r a t i o n  d i f f u s i o n ,  can  be i g n o r e d  b e -  
c a u s e  t h e y  make a s m a l l  c o n t r i b u t i o n  on t h e  o r d e r  o f  max ( c i / c ,  Ce/C) in  t h e  r e l a t i o n s  o b t a i n e d  
b e l o w  f o r  t h e  d i s t r i b u t i o n  o f  t h e  a d d i t i o n .  

The s o u g h t  d i s t r i b u t i o n  i s  d e s c r i b e d  by t h e  f o l l o w i n g  e q u a t i o n s  i n  t h e  b o u n d a r y - l a y e r  
a p p r o x i m a t i o n :  

~vv;':O,~: + 'v~-~.~ = oV , ~ - -  e N F  + j~ , ( 1 . 4) 

- - c A ' F  + ]i i=o=/~ '  

where Jw is the flow of the addition to the wall; c~ is the concentration of the element in 
the core of the flow. Due to the linearity of this equation (Ji can be considered indepen- 
dent of e in the first approximation), we will formally represent its solution in the form 
c = e ~ + Ac CRA, where c ~ satisfies the equation 

Nv.~ g~- + ~vl v oil - -  O,j ~ - -  c ~  ' 

c o (x~ oo) ---- c=o = e o n s t ,  ( I .5) 

( - - N D O c O / O g  - -  cONF)[,a=o ~ = ] .... 

i.e., it is the solution of an ordinary mass-transfer problem in the absence of the current. 
The CRA (current redistribution of the addition) being described Ac CRA obviously satisfies 
Eq. (1.4) with the boundary conditions 

Ac c~A  (x, ~ )  = O, ( - - N D O A c  c ~  /Otj - -  Ac c ~  N F  + ]~)L,,==o = O, 
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i.e., it is independent of the flow of addition to the wall. We write 5c CRA in the form 

f J~@ ( 1 6) kc C R A = - ~  ~ +  ~ , ( b = e x p  -- (F/D) dg , 

y 0 

where the first term is the solution of (1.4) for 5c CRA when we ignore the convective terms 
[the left side of (1.4)] and 5 is a correction for convection. After insertion of (1.3) into 
(1.6), we have 

+ + (1.7) 

e !re NI)~' A C e  = -- ~ , e :VDd) ay ~idY" 
Y Y 

Here, Ac~ RA and Ac~ RA are the contributions of the quasineutral region and the space-charge 
layer to the CRA obtained when convection is ignored. The quantity $ is determined by the 
following equation after the insertion of (1.6) into (1.4): 

. : a~ ~ - -  ( 1 . 8 )  

Since the space-charge region lies within the viscous sublayer, where convection is in- 
substantial, in calculating 5 we can omit the term Ac~ RA in (1.8). To evaluate 5, we will 
examine a hypothetical laminar plane-parallel flow with a velocity distribution conforming 
to a "one-seventh" law, i.e. [3], 

v~ (0) = v~O ~/7, vv = O, 0 - -  y/5 (x), 5 (x) = 0.37x ReZ ~ 

where 6(x) is the thickness of the boundary layer; Re x = v~x/~ m is the Reynolds number (v m 
is the molecular kinematic viscosity). Assuming for simplicity that @(y) = I, Sc = Sct = I 
(molecular and turbulent Schmidt numbers), and (J/e)(~i/~e) = const, we find the following 
if we assume that the frictional stress is constant across the boundary layer and is equal 
to its value on the wall: 

D = 0.545 t'~62 0~/~ 
X 

Inserting this expression into (1.8) and assuming that ~ = (x/8)X(e), we write the following 
ordinary differential equation for 

x "  + x ' ((6/7)0-:  § 1,470 ~/7) - 0,3670-~/~x + (1,47~'0 ~/~ - 0.367~0-w7) = o. x (1) = 0 .  z '(o) = o, 

i . e . ,  the problem is a s i m i l a r i t y  problem for  the given f low.  F igure  1 shows graphs of ~(O)/ 
V(0)(=Ac~RA(x, y)/kc~RA(x, 0)) and x ( e ) / T ( o ) ( = 5 ( x ,  y)/Sc~RA(x, 0 ) ) ,  from which i t  fo l lows  
that the contribution of 6 to kc CRA is small in the most important boundary regions (about 
10% of Ac~RA). On the other hand, it follows from the estimates presented below that CRA is 
unimportant in the regions where Ac~ RA ~ 5. Thus, the value of 6 in (1.6) can be ignored 
when calculating AcCRA. 

As concerns the "mass-transfer" term c o from (1.5), for convenience in the subsequent 
analysis we will represent it in the form 

cO= e~O(g)/O(oo) + AeJ, 

where the first term describes the distribution of c o when the convective terms are ignored 
and when Jw = 0. The quantity AcJ satisfies the same boundary conditions as does Ac CRA (with 
the replacement of Ji by --Jw)- Since the constant --Jw can be inserted under the differentia- 
tion sign in the right side of (1.5), &c CRA and AcJ formally satisfy the same equations. Thus 
in this case we can also assume with good accuracy that 

(Dr 1~ elF. ( 1 . 9 )  
Y 
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Finally, we have the following for the complete redistribution of the addition due to 
all of the effects examined above 

= , . a ,  + A,J + (1 .  lo)  

The value of Jw needed to calculate Acj should be determined on the basis of specific bound- 
ary conditions. In writing these conditions [with the use of (1.10)], we can obtain an equa- 
tion relative to Jw" Insertion of the resulting Jw into (1.9) also gives the solution to the 
problem. 

2. Let us take a closer look at the function ~(y) from (I .6), which describes the ef- 
fect of thermal diffusion and the difference in the diffusion coefficients of the components 
on the distribution. For convenience, we write it, using (I .I), in the form of the product 
of the diffusion and thermal diffusion terms: 

= ( ~ ) D ( ~ )  T = e x p  - -  ~ ' dy e x p  . . . . .  dg ( 2 . 1 )  

h h 

In the simplest case, when the diffusion coefficients of different neutral components are 
equal (and their thermal diffusion coefficients are also equal), ~, by virtue of the equality 

~,gh~t~=i , turns out to be a function only of y and T = T(y), i.e., (1.10) turns out to be the 
h 

sought solution in quadratures. The same result is obviously obtained when the coefficients 
of diffusion and thermal diffusion are different, but there is local chemical equilibrium, 
and it is assumed that no molecules containing two or more potassium atoms (such as KeCOs) 
are formed [given these assumptions, ~k = ~k(T(Y))] �9 The last condition can in principle be 
dropped if we assume that the boundary layer has a two-layer structure (purely turbulent and 
purely viscous regions), ignore thermal diffusion, and assume that the molecular diffusion 
coefficients of the neutral components have the same temperature dependence (see [I] for more 
details on this). 

At a certain distance from the wall, the characteristic time of diffusion ~D ~ Y 2/D be- 
comes shorter than the chemical relaxation time. Thus the assumption regarding chemical 
equilibrium is invalid here. This complicates the problem because now the determination of 
~k requires numerical solution of a system of differential equations describing diffusion and 
nonequilibrium chemical reactions. However, if ~(y) differs little from unity, then informa- 
tion on the regime of the chemical reactions is unnecessary to calculate the distribution of 
elemental potassium (1.10). The condition ~(y) ~ I is satisfied with good accuracy due to the 
relatively small difference between the diffusion coefficients of the components and the 
freezing of chemical reactions near the wall in an MHD channel. 

We will show this by using a two-layer model of the distribution of the transport coef- 
f ic ients : 

D~ /D t, y > 8 ~ ,  (2 .2)  
mo (r/'7',,,), y " =  [D, ,  ( )q~ < 8 r ,  

where 6 r is the thickness of the viscous sublayer; T w is the wall temperature; Dt and ~ ( T / T . ~ )  

are general functions for all of the components. It follows from (2.1) that in the viscous 
sublayer 
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TABLE I 

' l ~ - - m  ' ' ' [ ]<- No H--H~O 
I 

m 3,1}5. 0 -4 <~ qo i0-4 lJ s,,, ,(  7 . ) . ' ' ~ c  . . . .  .: o .  

7 I 1 ,{i8 i" 1,82 

I~OII --N2 

4,95.10 -4 

I KOH--H~O 

3,46. t0 -4 

1,85 I 2,16 

(Do (Y) = E,< D~(0) g ~  (0)/t~.~ ~ D~(O)~k ~k(Y), Y < 6r. ( 2 .3 )  

m 
Table 1 shows values of the constants Dkm and y in the formula 

D m ,,m = Di~ (To) (T/T0) v (p</'p,,,), ( 2 .4 )  

approximating the results of calculations of binary coefficients of diffusion of the addition 
in a first approximation of the Champion--Enskog theory [4] (the parameters of molecular inter- 
action were determined by Brokaw's method [5]). In (2.4), p0 = I0 s Pa, To = 2000~ and Pm 
is the partial pressure of the m-th component of the buffer gas. With compositions of the 
combustion products typical of MHD channels, the coefficient of diffusion of the potassium 
atoms turns out to be lower than the coefficient for the KOH molecules. In accordance with 
(2.3), this leads to an increase in ~D with increasing distance from the wall (since in this 

case ~K increases and ~KOH decreases). The maximum possible value of ~D(~r) = D~OH(0)/D~(0) 
1.4 is reached when ~K(0) = 0, ~KOH(6r) = 0 [obviously, ~D(0) = I]. However, for actual con- 
ditions, we have the typical relations CK(~r) % ~KOH(6r), ~K(0) ~ 0.2, ~KOH(0) % 0.8 (at T w = 
2000~ which leads to the estimate ~D(6r) = 1.1, i.e., the effect turns out to be fairly 
weak. 

The diffusion coefficients of the components are equal in the turbulent region, and it 
follows from (2.l) and the condition ~g~h =i that 

k 

~D(Y) = ~D(6r), Y > ~ r. (2.5) 

Returning to Eq. (2.3), we note that the disturbance of local chemical equilibrium near 

the wall reduces the change in ~K and ~KOH across the viscous sublayer (the reactions are 
"quenched"), so that the deviation of ~D from unity turns out to be even smaller. 

Now proceeding to the evaluation of ~T, we note that, in accordance with (2.1), the 
change in ~T in the turbulent region proves to be insubstantial because D t ~ D m. Thermal 
diffusion leads to accumulation of the addition in the cold wall regions, these regions con- 
taining the heaviest and largest molecules in the combustion products [4]. Table 2 shows 
values of the thermal diffusion constants ~T calculated in a first approximation of the Cham- 
pion--Enskog theory [4] for the repulsion potential ~,!r ~ (the constants ~ were determined from 

the data in Table I on the diffusion coefficients at T = 2000~ 

It is not possible to obtain such a simple approximate relation as (2.3) for CT, but in 
this case there is no need to. In fact, it follows from the result for a two-component mix- 

ture 

~T (y) = IT (y)/T~] -~ r  

that with characteristic values of the ratios T(6r)/T w % 1.1-1.2, thermal diffusion leads to 
an increase in the concentration of the addition near the wall by a total of I-5%, i.e., this 
effect can be ignored in many cases. 

It should be noted that since ~T < I and ~D > l, the above effects are partially compen- 
sated. Thus we can take ~ ~ I. As indicated above, satisfaction of this condition allows us 
to calculate Ac CRA (as well as c o ) without regard to the chemical composition of the addition. 

3. Now proceeding to the CRA, we note that this effect was examined in detail in [I] for 
a quasineutral plasma [Ac~ RA in (1.7) in the special case of a stabilized turbulent flow. 
Thus, here we make a generalization to the case of flow with boundary layers, having used the 
two-layer scheme (2.2) for the purpose of simplification. 

Using Eqs. (2.3) and (2.5) for CD in the viscous and turbulent regions (thermal diffu- 
sion is ignored), we obtain the following from (1.7), assuming (J/e)(~i/p e) = eonst: 
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TABLE 2 

~ / I o,,o o,o , 

Ae I1 (Y)" 't  e ~ .  
Y 

6r 

(3.1) 

�9 co 

CRA f gy J I~i I f dy J ,~ (3.2) 
Acn (Y) = V N D t  e ~e + ~]Dm(0")g~k(V) ~ N~-(y) e g '  Y < 6 r "  

6 r  

i t  i s  o b v i o u s  t h a t  ( 3 . 1 )  and t h e  f i r s t  i n t e g r a l  in  ( 3 . 2 )  a r e  d e t e r m i n e d  by t h e  h y d r o d y n a m i c  
c h a r a c t e r i s t i c s  o f  t h e  f l o w ,  w h i l e  t h e  second  t e r m  in  ( 3 . 2 )  a l s o  depends  on t h e  c h e m i c a l  com- 
p o s i t i o n -  which  v a r i e s  o v e r  t h e  c r o s s  s e c t i o n ,  i t  f o l l o w s  f r o m  ( 3 . 2 )  t h a t  t h e  c o m p l e t e  r e -  
d i s t r i b u t i o n  o f  t h e  a d d i t i o n  a c r o s s  t h e  b o u n d a r y  l a y e r  

co ~r  co 
CRA . f  dy ] lXi , ~ dy(d-/e) (~tl/l~e) f dy 3" ~t i (3.3) 

~% (0) = 6 ~ ~ - ~ t  7 i~0 + s ~ ore(y) ~h~ (0) 0 J ~Yo0 ~ M~ 
0 N 

is determined by the composition of the addition near the wall (Do is the coefficient of dif- 
fusion of the element for a constant boundary composition), which is usually known beforehand 
[usually, ~KOH(O) ~ I]. Thus, calculation of AcR RA does not require information on chemical 
reactions and can be used to determine the Sherewood number Sh, characterizing the rate of 
mass transfer of a one-component nonreacting addition in the buffer gas: 

]w = --N(~176176176176176 - -  c(O) )]x, ( 3 . 4 )  

where, in accordance with [6, 7], the physical quantities are referred to conditions in the 
core of nonisothermal turbulent flow (in the flow cooling regime). Comparing (3.4) and (1.9) 
(with ~ = I), we have 

J ' dy x . ~ . . ~  
N (oo) nm(o9) Sh' ( 3 . 5 )  

0 

CRA J ~i x 
Ac n ( 0 ) =  ~ ~, N(~176 (oo)sa ---- m ' (3.6) 

where the current density J can be considered a free parameter, since it was shown in [8] 
that the CRA in the quasineutral region has a slight effect on the volt--ampere characteris- 
tics (VAC) of the channel. The similarity between heat and mass transfer allows us to cal- 
culate Sh with well-known heat-transfer formulas such as Sh = 0.0296Re~'5Sc ~ [9], where 
Re x and Sc are the Reynolds and Schmidt numbers (determined in regard to conditions in the 
flow core). Figure 2 shows the dependence of Ac~RA(0) on the longitudinal coordinate x for 
the following characteristic values of the parameters: T~ = 3000~ v~ = 500 m/sec, ~ = 
D~ = 8.4.10 ~ m2/sec, J = I0 ~ A/'m2, ~e/~i = 150, p = 105 Pa. The effect obviously has dif- 
ferent signs on the anode and cathode: The concentration is reduced at the anode and increased 
at the cathode. As can be seen from Fig. 2, the difference may reach 10% with c(~) = 5-10 -3 

In calculating the contribution of the space-charge region to the CRA [the term &c~ RA 
in (1.7)], we can ignore the small term vxB compared to the field E, which is substantially 
larger in the present case. Another simplification is connected with the fact that this re- 
gion lies inside the viscous sublayer. Using the Einstein relation Pi = eD~/kT (D~ is the 
coefficient of molecular diffusion of the ions and k is the Boltzmann constant) and taking 

m m 
the same temperature dependence for D i as for D k [see (2.2)], we insert (2.3) into the ex- 
pression for Ac~ RA (1.7) and, after abbreviating, we obtain 

m m 
CRA e 0 E 2 O~ (0) e0 E2 (y) D~ (y) (3.7) 

Aec (Y) = W (Y) ~ D - - ~  m(0) gk~ (Y) 2p -- -L-m-~y) ' 
k 

where p is the pressure of the buffer gas [the weak field E(~) is ignored]. It follows from 
(3.7) that calculating of Ac~ RA requires knowledge of the distribution of E -- and, thus, the 
VAC of the electrode layer. Calculation of the latter is a complicated problem by itself, 
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requiring consideration of heat release, emission, and different ionization mechanisms (see 
[10, 11], for example). It is obvious that CRA should affect the VAC, so that a self-adjoint 
problem of calculating &c~ RA and E arises. It was shown in [10], however, that even a sub- 
stantial variation in the distribution of potassium atoms does not have a significant effect 
on the VAC, i.e., the problem can be considered uncoupled, and well-known results for E ob- 
tained without allowance for CRA can be used to calculate (3.7). If there is an empirically 
or theoretically established VAC for the cathode layer (the value of &c~ RA in the anode layer 
is small due to the weakness of the electrical fields), then for the determination of E(0) -- 
required to calculate Ac~RA(0) (i.e., the redistribution across the entire layer) -- it is 
possible to use the familiar formula (see [12], for example) 

E(O) = (3JVe/%Vi) qs, (3.8) 

where V c is the potential drop in the charged region. Although Eq. (3.8) was obtained for the 
simplest electrode-layer model, it is evidently universal in character and remains valid for 
other, more complicated models. For characteristic values J = 104 A/m 2, Vc = 100 V, ~i(0) = 
1.8.10 -3 m2/(V.sec), p = I0 SPa, ~i(0)kTw/eDm(0) = I, we obtain the estimate Ac~RA(0) = 1.5. 

10 -3 With c~ = 6.10 -3 , the increase in the concentration of the addition at the cathode as 
a result of the above-examined effect is 25%, i.e., the effect is fairly strong. 

It should be noted that the product JV c in (3.8) is the Joule heating capacity (per unit 
area of the electrode). At the same time, it was shown in [10] that electrothermal instabil- 
ity of the diffusion discharge and its transition to a contracted discharge occurs when JV c 
qw, where qw is the convective flow of heat to the wall undisturbed by heat liberation. Thus, 
use of this estimate permits determination of the dependence of Ac~ RA on qw for the most 
favorable regime of MHD generator operation -- at the limit of stability of the diffusion dis- 
charge. It follows from the form of this relation shown in Fig. 3 that, for different values 
of qw, the difference in the concentrations between the cathode and core due to Ac~ RA may 
reach 70%. 

Due to the proposed division of the problem of calculating the CRA and VAC, the quasi- 
neutral and nonquasineutral terms in (1.7) are independent and are additive (the division of 
the plasma into a quasineutral region and a space-charge region is hypothetical in character 
and was not used in deriving (1.8) and will not be used subsequently). Thus, the total dif- 
ference in the concentrations between the cathode and anode may reach 80%. This conclusion 
agrees particularly with the results of certain empirical studies [13, 14] which noted greater 
breakdown of the cathode than the anode under the influence of the addition. According to the 
estimates in [14], 30% more of the addition may be absorbed in porous cathodes than in anodes. 

4. Absorption of the addition on the wall (diffusion into pores, condensation on the 
surface) leads to a decrease in its concentration near the electrodes, which is formally de- 
scribed by the term AcJ in (1.10). 

In the case of hot walls (T w ~ 2000~ ceramic electrodes are usually used. Here, the 
addition penetrates the pores in these electrodes to a certain depth, condenses, and crystal- 
lizes. As a rule, the diffusion currents which are created here are weak and do not have a 
significant effect on the distribution of the addition in the flow. 

A different situation is seen in the case of cold electrodes (T w ~ 1100~ when the 
addition (KOH vapor) condenses on the walls of the channel and the condensate can flow down- 
stream. Here, the process is complicated by the fact that the reaction 2KOH + C02 § K2C03 + 
H20 takes place in the electrode regions at T ~ 1500~ and the potassium carbonate formed, 
being supersaturated, condenses in the volume and crystallizes (at T = 1173~ [15]. How- 
ever, these processes begin so close to the wall (y ~ 10 -4 m) that the time of diffusion 
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~D m I 0 - 4 - I 0  -s  sec is to all indications much shorter than the characteristic time of the 
chemical reaction. Thus, it has no effect on the distribution of KOH molecules and can be 

ignored when calculating condensation on the wall. This conclusion is supported by the re- 
sults in [15], where it was found during observation of deposits on walls that the addition 
is deposited mainly in the form of KOH. We will also assume that the electrodes are im- 
permeable and that the KOH concentration near the electrodes is equal to the saturation con- 

s 
centration CKOH(T w) for a given wall temperature T w [when there is no condensation, in ac- 
cordance with (I�9 c(0) = c~/~(~) + AcCRA]. Assuming Ac CRA to be independent of Jw (more 
accurately, independent of AcJ), we obtain the following from (1.10) 

,/s ]w [C=/~ (oo) + AC CRA s dy 
= - - c ~ o ~  ( T ~  ~D@ 

CRA S 
at c~/~(oo) + Ac , ~c~oH(Tw) ,  (4.1) 

CRA s 
]w = 0 at c~/~ (oo) + Ac - <  c ~ o H  (Tw). 

A n e g a t i v e  v a l u e  o f  Jw i n  ( 4 . 1 )  i s  c o n n e c t e d  w i t h  t h e  c h o s e n  d i r e c t i o n  o f  t h e  y a x i s  --  f r o m  
t h e  w a l l  t o  t h e  f l o w .  I t  i s  e v i d e n t  f r o m  ( 4 . 1 )  t h a t  t h e  r a t i o  o f  t h e  f l o w s  on t h e  a n o d e  and  
�9 c a t h o d e  d e p e n d s  on t h e  w a l l  t e m p e r a t u r e  [ d u e  t o  t h e  d i f f e r e n c e  i n  AcCRA(0) on t h e m  -- on t h e  
c a t h o d e ,  w h e r e  hc  CRA > 0 ,  c o n d e n s a t i o n  may a l r e a d y  h a v e  b e g u n ,  w h i l e  i t  r e m a i n s  e q u a l  t o  z e r o  
a t  t h e  c a t h o d e ,  w h e r e  Ae CRA < 0 ) .  The d e p e n d e n c e  o f  t h e  c o n c e n t r a t i o n  o f  s a t u r a t e d  K0H v a p o r  
on t e m p e r a t u r e  i s  d e s c r i b e d  b y  t h e  f o r m u l a  

$ 
hC~on (T) = (A/p) exp ( "  B/T), 

w h e r e  A = 1 . 4 - 1 0 1 ~  P a ;  B = 1 . 9 " 1 0 " ~  p i s  t h e  p r e s s u r e  o f  t h e  b u f f e r  g a s .  

F i g u r e  4 shows t h e  d e p e n d e n c e  o f  t h e  r a t i o s  C c ( 0 ) / c  (0)  a n d  J w c / 3 w a  ( t h e  s u b s c r i p t  c d e -  
n o t e s  t h e  c a t h o d e ,  w h i l e  a d e n o t e s  t h e  a n o d e )  on w a l l  t e m p e r a t u r e  a t  p = 105 Pa and  e ~ / ~ ( ~ )  + 
5cCRA(0) = 0 . 0 0 8  a t  t h e  c a t h o d e  and  0 . 0 0 5 7  a t  t h e  a n o d e  ( w h i c h  c o r r e s p o n d s  t o  a 40% d i f f e r -  
e n c e  i n  c o n c e n t r a t i o n ) .  At  Tw > 1140~ c c ( O ) / c a ( 0 )  = 1 . 4 ,  J w c / J w  a = 0 .  At  1115~ < T w < 
1140~ C c ( O ) / c a ( O )  d e c r e a s e s  t o  u n i t y ,  w h i l e  J w c / J w a  = ~ ,  s i n c e  c o n d e n s a t i o n  h a s  b e g u n  a t  
t h e  c a t h o d e  b u t  n o t  a t  t h e  a n o d e .  At  T w < 1115~ c o n d e n s a t i o n  h a s  a l s o  b e g u n  a t  t h e  a n o d e ,  
The c o n c e n t r a t i o n s  a t  t h e  c a t h o d e  a n d  a n o d e  b e c o m e  e q u a l ,  w h i l e  3 w c / J w a  d e c r e a s e s  f r o m  a t o  
the limiting value 1.4 (equal to the ratio of the concentrations before the beginning of con- 
densation). The characteristic range in which there is a sharp change in Jwc/Jwa (i.e., the 
saturation of the flows) is AT % T~o/B ~ 70~ where Tco is the temperature of the beginning 
of condensation. 
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VAPOR CONDENSATION ON AN INCLINED PLATE WITHIN A POROUS MEDIUM 

V. A. Mukhin, V. E. Nakoryakov, 
P. T. Petrik, and G. S. Serdakov 

UDC 532.546;536.242;536.423.4 

In chemical technology, thermal power generation, and other branches of technology the 
process of heating a surface by condensing vapor is widespread. The process of vapor con- 
densation on smooth surfaces has been studied quite thoroughly [I-6]. Theoretical and ex- 
perimental studies in this field have expanded the concepts of processes occurring in vapor 
condensation and permitted development of a technique for engineering calculations of con- 
densation equipment. 

Recently a number of technological applications have turned to condensation processes 
occurring under more complex conditions, for example, in narrow slits, or on surfaces located 
within porous media. This problem has not been investigated thoroughly. Although the first 
theoretical treatments have appeared [7, 8], experimental studies of vapor condensation on 
surfaces located in a porous medium are absent from the literature. 

We will consider the problem of vapor condensation on an inclined plane surface located 
within a porous medium (Fig. I). The vapor condenses on the outer surface of a moving con- 
densate film. 

We make the following basic assumptions: I) Inertial forces developing in the film are 
small in comparison to viscous and gravitational forces; 2) there is no friction at the liq- 
uid-vapor phase boundary, and the temperature of the outer surface of the condensate film 
remains constant at the saturation temperature; 3) heat transfer is accomplished by thermal 
conductivity (effective) of the liquid across the film, while heat transport in the longi- 
tudinal direction may be neglected; 4) the physical properties of the liquid are temperature- 
independent. 

To calculate velocity profiles in the liquid film moving along the inclined surface we 
will use Brinkman's filtration equation [9], which in essence is a simple snperposition of 
Darcy's law and the equation of viscous flow in a porous medium. For planar flow in a porous 
medium under the action of gravity it has the form 

~'d2u/dg 2 - -  ~'u/H + ( 9 ' -  9")g~ = O, (1)  

with boundary conditions y = 0, u = 0; y = 5, du/dy = 0, where u is the dimensionless velocity 
of the motion and y is the transverse coordinate; g~ =goose; ~ is the angle between the sur- 
face studied and the vertical; ~', p' are the liquid viscosity and density; p" is the vapor 
density; ~ is the permeability of the porous medium and 6 is the film thickness. The solution 
of Eq. (I) is: 
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